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I. Phys.: Condens. Matter 7 (1995) 3373-3387. Printed in the UK 

Electron energy loss in multilayered slabs: I. Normal 
incidence 

J P R Bolton and M Chen 
Physics Department, The Open University, Walton Hall. Milton Keynes MK7 6AA. UK 

Received 28 July 1994. in find form I March 1995 

Abstract. This work develops the semiclassical dielectric theory of energy loss. including 
retardation effects. for electrons Vavelling normal to a stratified slab. Stating from a transfer 
matrix formulauon and using computer algebra we obtain closed Formulae for the dispersion 
relation. the Hem vector and the energy-loss specuum, valid for any finite number of layers. 
Our results are applied to multilayers of AI/AlzO, and are used 10 investigate the validity of 
modellmg a single interface by 3 sharp discontinuity in the dielectric function. 

1. Introduction 

Dielectric theory has been widely used to analyse energy-loss spectra obtained by scanning 
transmission electron microscopy. For example, a well-known semiclassical theory [ 1, 21 
relates the energy-loss spectrum in a bulk medium to the imaginary part of the inverse of the 
dielectric function. The surface effects of a single homogeneous isotropic slab have also 
been thoroughly investigated. Otto and Kloos calculated the retarded dispersion relation 
for a single slab [3, 41. The energy-loss spectrum for normal incidence on a single slab 
was calculated in the electrostatic limit by Ritchie [5] and in the retarded case by Kroger 
[6], who subsequently extended his calculation to cover oblique incidence on a single slab 
[7]. The case of parallel incidence has also been studied. Howie and co-workers [8, 9, IO] 
calculated the retarded energy-loss spectrum near a single interface and Parker performed 
a similar calculation for a beam passing parallel to a single homogeneous isotropic slab 
[ I I ,  121. 

This paper is the first part of a systematic investigation which extends the work 
cited above by deriving formulae, analogous to those of Kroger or Parker, but valid for 
multilayered and anisotropic slabs. The present paper gives the theory of normal incidence 
on multilayered slabs in which each layer is composed of a homogeneous isotropic medium. 
Subsequent papers will deal with parallel and oblique incidence on multilayered slabs and 
with slabs composed of anisotropic media. A general feature of this work is that it involves 
algebra of tedious length; this difficulty has been addressed by using computer algebra 
(REDUCE and MATHEMATICA) [13]. Our initial aim was to exploit computer algebra to 
derive answers in a few special cases (double- or triple-layered slabs, for example) but we 
have found that a combination of computer algebra and inductive argument produces more 
general results, valid for any number of layers. 

The paper is organized as follows. Section 2 defines the problem and casts the boundary 
conditions in the form of a transfer matrix recurrence relation for the Hertz vector. This 
section does not advance beyond the work of Chase and Kliewer [ 141 but is included in order 
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to establish important notation that is required latetf. Section 3 introduces the concept of a 
dispersion bracket. Section 4 uses dispersion brackets to interpret the dispersion relation. In 
section 5,  the transfer mahix recurrence relation is solved and general formulae obtained for 
the Hertz vector and the energy-loss function. Section 6 discusses the symmetries of these 
solutions and looks at some special cases. The theory is illustrated by numerical examples 
in section 7. We consider multilayered slabs of AI/A1209 and also use our formalism to 
examine whether it is reasonable to model a single interface by a sharp discontinuity in the 
dielectric function. The paper concludes with a summary in section 8. 

Available space prevents us from reproducing all the steps in our analysis. We can only 
give an outline here, concentrating on OUT notation, general methods and final results. For 
readers who would like to follow the proofs in detail, we have prepared a lengthy internal 
report [15] which covers normal incidence, parallel incidence and anisotropic slabs. On 
the other hand, readers interested in our final results, rather than the techniques used to 
derive them, may wish to concentrate on equations (15), (17), (18) and (20) for general 
multilayered slabs and equations (23) and (24) for symmetric multilayered slabs. Note, 
however, that all these formulae are based on the concept of a dispersion bracket which is 
introduced and explained in section 3 . ~  

J P R Bolton and M Chen 

2. The transfer matrix recurrence relation 

Consider a beam of particles, each of charge Q,  travelling at constant speed U along the 
z-axis (figure 1). The beam passes through a multilayered slab of total thickness a which 
is stratified in the x-y-plane. The slab contains n layers (labelled 1. . . . , n) which extend 
infinitely in the x-  and 7-directions but are finite in the z-direction. The j th layer of the 
slab extends from zj-1 to zj, has thickness aj = zj - z j - ~  and local dielectric function ~ j ( w ) .  
The external regions (labelled 0 and n + 1) extend from z-] = -m to zo = 0 and from 
zn = a  to zn+l = 00; they are vacua, so €0 = 

To apply the semiclassical dielectric formalism we must first solve Maxwell's equations. 
It is convenient to express all fields in terms of the Hertz vector [ 161 and to Fourier transform 
from ( x .  y. z ,  t )  to ( k x ,  k , ,  i ,  w ) .  In any given region, j ,  Maxwell's equations then reduce 
to a simple wave equation for the Fourier-transformed Hertz vector: 

= 1. 

where: 

Equation (1) is satisfied by taking 

where the symbol U is used to denote f (with u2 = +) and 

p '  I -  - k2 - E ~ o ' / c ~  + w2 /U'. 

t 1141 uses electric fields while our work is expressed in t e m  of ihe H e m  vector, but this difference is immalerial; 
more significantly, 1141 provides only a numerical algorithm. while our work leads io closed-form solutions. 
$ Here and elsewhere, the squawroot sign is wken to yield a quantity wilh a positive real pm. 
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€0 = 1 
z = a = o  
z = 21 = ai 

€n+1 = 1 n + l  I 
Figure 1. Multilayer geomevy for normd incidence. 

The 2n + 4 coefficients A," must be determined from the boundary conditions. Because of 
axial symmetry, these coefficients depend only on k and a. In principle, they can be found 
by allowing the Hertz vector to vanish at infinity and by solving the 2n + 2 linear equations 
obtained by requiring E I I ,  and aII,/az to be continuous at each interface (conditions that 
guamntee continuity of the transverse components of E and H ) .  In practice, this direct 
approach becomes unwieldy for slabs of more than three layers and it is better to incorporate 
the boundary conditions one interface at a time, using a transfer matrix recurrence relation 
to relate the Hertz vector coefficients in region j to those in region j + 1. In order to 
express this recurrence relation in the simplest possible form we first introduce re-scaled 
Hertz vector coefficients 

and define the coefficient vector for region j :  

Qj = (Z). 
Next, we introduce the variables 

h t  = q i 6 j  + u q j ~ i  

f, = eU,% with fo = fn+l = 1 
b? = eniw,/u with b{ bl+l = 1 

I 

and define the transfer matrix from region j to region j + 1: 
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h~+,,j+lal+l = - + sj. fib? 

Finally, we introduce the variables 

(10) 

( € 1  - € j ) S i ;  
s9 . 

' I  

where 
s; = p i  + oic,q,vojc2 

p ' '  11 - - 
and 

k2 - ( E l  + €,)W?/CZ + w 2 p  

and define the source vector for region j :  

This equation, which has been checked by REDUCE, summarizes the effect of the boundary 
conditions at the ( j  + I)th interface. Repeated application of this recurrence relation from 
j = 0 to j = n allows us to link the coefficient vecton in the two external regions; 
the boundary conditions at z = &CO then give an expression for the coefficient vector in 
region 0: 

where 
1 

ll'; = n h & f k b ;  with initial value = 1 
k=i 

and 
j-1 

T@) = n T(~+ ' . ' )  (with the product ordered from right to left). (12) 
k=i 

The dispersion relation for an n-layered slab follows immediately: 

Z y o )  = 0 (13) 
Moreover, once the coefficient vector is known in region 0, equation (10) can be used to 
find the coefficient vectors in all the other regions. In principle, the electric field acting on 
the electron and the total energy loss can then be calculated algebraically. Unfortunately, 
a straightforward application of this procedure generates coefficient vectors that become 
increasingly complicated as one progresses through the multilayered slab, and thc resulting 
expression for the energy loss is very complicated indeed, even for double or triple slabs. 
It is always possible to proceed numerically [13, 14, 171, but this approach provides no 
insight into the analytic form of the solution or its relationship to the well-known results 
established for a single slab [6, 71. 

Since the main aim of this work is to provide closed formulae for the dispersion relation 
and the energy loss probability, valid for any number of layers and expressed in the simplest 
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possible terms, a different approach is needed. Simplicity is essential but elusive; without 
special care, the results obtained are of paralysing complexity. A natural response to this 
complexity is to use computer algebra and we have applied both REDUCE and MATHEMATIC4 
to simplify the solutions for low values of n. This process is by no means automatic and 
we have supplemented the standard programs with packages of our own which facilitate the 
simplification of large multinomials. In this way, we obtain solutions that are simplified as 
far as possible for n = I ,  2 and 3. These solutions follow a definite pattern, allowing us 
to guess the general form of solutions for arbitrary n. The final stage of our analysis is to 
use mathematical induction to prove that these tentative guesses are correct. The role of 
computer algebra is therefore heuristic; we would have found it difficult to construct our 
final solutions without using computer algebra, yet our final proofs do not rely on it. 

3. The dispersion bracket formalism 

Our formulae for the dispersion relation and the energy loss are best expressed in terms of 
a new algebraic operation which is defined for any product of terms bearing & superscripts 
interspersed by f2-factors, such as h; f:hll f:h,. The product is assumed to be ordered 
so that the subscripts increase monotonically from one end to the other. We then define a 
contraction of the ordered product by choosing two terms with + superscripts, reversing the 
signs of these superscripts and removing all the f 2-factors between them. The contraction 
is represented by a square overbrace so, for example, 

n 
2 - - h -  Zh-h+ h,f:hhfl h10 - 3252 21 IO '  

We invariably need to consider the sum of all non-overlapping contractions of the ordered 
product, including the term with no contractions. Such a sum will be referred to as a 
dispersion bracket and denoted by enclosing the product in square brackets. For example, 

[h,f:hll f?h,l 
n n 

In general, a product containing n-factors with & superscripts yields a dispersion bracket 
which is the sum of 2"-' terms. The dispersion brackets of several different products will 
be used in this work. The fundamental product is 

J I 

cji = nht+;l,kfk2 = n f:hkk+, for j > i 
k=i k=i 

with CC-l,i = 1 and Ci-2.i = 0. Other products can then be defined in terms of Cji: 
D.. -C.. h- 

I t  - I J i l  i+l.i 

Eji = hy+l.jf/2Cj-i.i 

Fji = h ; + l , j ~ 2 C j - ~ . i + ~ h ~ + , , i  for j > i + 1 

with Fii = hL, , i ,  Fi-l.t = 1 and Fi-2,i = 0. Dispersion brackets of these products arise 
naturally in our analysis because 
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This result was first checked by computer algebra for j - i < 10 and then proved by 
mathematical induction for arbitrary j - i f l 5 ,  IS]. It provides an alternative method for 
evaluating the matrix elements of d j i ) .  Rather than using the direct matrix multiplication of 
(12) we can use the dispersion bracket expansion outlined above, the latter approach being 
especially convenient for low-order products ( j  - i < 5 or so). Moreover, the importance 
of dispersion brackets extends beyond the matrix elements of the d j i ) .  In section 5,  we 
shall use the dispersion brackets of two further products: 

J P R Bolton and M Chen 

2 x; = Sjt1,jfi cj-I,, 
q = s~i+icj,i+l. 

Introduction of these quantities allows us to develop algebraic methods, valid for slabs 
containing any number of layers, which eventually yield a compact formuta for the energy- 
loss probability. For e a e  of reference, we summarize our definitions in table I ,  using a 
more explicit notation. With these definitions in place, we are in a good position to describe 
our main results. 

Cj, = h? J + I . J  .f2 J . ..hT+l,ifiz with Cji = hLi,;&* and C,,i+l = 1 

E,, = h;+ , , i f i2 . . .h~l . r fz  with Ejj = h;+l.ifi2 and Ei, i+l=O 

Fjj = hF+i.j$z.. . hF+l,if;2 with Fii = h L i , i  and Fi,i+1=1 

X; = S;+l,jr;’...h:+,,i&2 with X; = SP,,,,f and X:,+, = O  

Dji = hJ+i, j$*. . .h~+l, ,  + with Di, = h;+l,i and D,,,+,=O 

Table 1. Produes needed in dispersion brackets. 

4. The dispersion relation 

The concept of a dispersion bracket has an immediate application in interpreting (13). Using 
equations (14) and (3, the dispersion relation for an n-layered slab becomes 

This result agrees with all known results for low n .  For example, setting n = 1 gives 

0 = [Cio] = h:,f;h:o + = (h:,)’f: - (hJz  

in  agreement with [19]. The results of [I71 for doublet and triple slabs are obtained by 
setting n = 2 and n = 3 in (15) and taking the electrostatic limit. Elsewhere ([15] and 
[20]), we have also examined our results in the limit of a superlattice with a arbitrary basis 
unit, and have verified that (15) reproduces the results of a calculation that directly applies 
Bloch’s theorem to a periodic structure. 

t It is neeessay lo comecl no obvious misprint in Richter and Geiger’s expression for a double slab. 
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5. The Hertz vector and energy loss 

in order to obtain an expression for the electron energy-loss spectrum we must first calculate 
the Hertz vector in each region inside and outside the slab. Our computer algebra programs 
suggest the following general formula for the coefficient vector in the j t h  region of an 
n-layer slab: 

where 

This result was first checked by computer algebra for n < 7 and then proved by mathematical 
induction for arbitrary n. In other words, we have shown that OUT previous expression for 
a; (equation (11)) is recovered on substituting j = 0 in (16) and then confirmed that the 
transfer matrix recurrence relation (equation (10)) guarantees that, if (16) is valid for j = i, 
then it is also valid for j = i + 1. The interested reader is referred to [lS] and [IS] for full 
details. 

Equation (16) is not of primary interest in the present study, but it is a vital step towards 
finding the energy-loss spectrum. By calculating the work done on the incoming particle by 
the electric field induced in the slab, and interpreting the result in terms of the transfer of 
quanta of energy Am, we can find the semiclassical energy loss function dzP/d(Aw) dk, This 
is normalized in such a way that the work done by a particle traversing the multilayered 
slab is given by 

W = 2ir imd( l iw)  h w i e o d k  k- d Z P  

The energy-loss function can then be expressed as 

where Xb.Ik represents the bulk contribution and xuy represents the boundary contributions 
(due to surfaces and interfaces). Our calculation shows that the bulk contribution is a sum 
over layers, with the ith layer contributing an amount equal to its thickness times the energy 
loss per unit length in an infinite sample of the ith medium [2]: 

The boundary contributions are more complicated. They are formally given by 

where 
i f i = O  
i f l < i < n  
if i = n + 1. 
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These expressions, combined with (16), yield a very lengthy expression for the energy-loss 
spectrum. Our main algebraic task has been to reduce this expression to a manageable 
form. After a considerable amount of algebra [18. 151, the boundary contribution to the 
energy-loss function emerges as a sum offactored terms: 

J P R Bolton and M Chen 

I 1 . ., , .. , . , , , . , , , 

where 

otherwise, 
zij = 

An alternative, somewhat more explicit, form is 

I t ."I,.,. I, " , I ,  , ~~ 

where 

Ti?) = ziJdG:tI., [.GI [y,;J (21) 
n=* 

and x" and y" are relatives of X" and I"', obtained by replacing Sa by so. 
Equations (18) and (20) are the main theoretical results of this paper. They provide a 

remarkabIy simple expression for the semiclassical energy-loss spectrum, valid for normal 
incidence on an arbitrary multilayered slab. In the special case n = 1, these equations 
reduce to 

which is a compact form of Kroger's expression for normal incidence on a single slab [6]. 
This type of checking cannot be pressed further because there are no published formulae 
for n z 1, however we have checked that (19) agrees with the solution for n = 2 which we 
obtained using the direct approach mentioned just below (2) in section 2. Further checks 
based on symmetry properties are presented in the next section. 

6. Symmetries and symmetrical slabs 

Having constructed closed-form solutions for the dispersion relation, the Hertz vector and 
the energy-loss function, we now investigate their symmetry properties and examine the 
simplifications that arise for symmetrical dabs. We define five operators: 

(i) 

(ii) 
(iii) reverses the sign of U ;  
(iv) 5 reverses the sign of o; 
(v) &A+I causes two neighbouring regions k and k t 1 to coalesce (accomplished by 

k). 

reverses the sign of q h  but leaves qj unchanged for j # k; 
reverses the labelling of the regions so that k + n + I - k ;  

setting G A + ~  + Q, q k + 1  + q h  etc, 2ak + ak and then renumbering j -+ j - 1 for j 
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6.1. The dispersion relation 

It is easy to see that [C.o] is invariant under and 2. We have also proved [I81 that 

$k([Cno]) = - [Cao] /&* 

t([C.O], = [C",]', 

for k = 1. .  . . , n (22) 
and 

It follows that the dispersion relation ((15)) is invariant under all four symmetry operations, 
as it  must be. Moreover, 

&k+l([cno]) = h t  [ c e - ~ . ~ ]  

so the dispersion relation correctly becomes that for an (n - 1)-layered slab when two 
neighbouring regions coalesce. 

6.2. The Hertz vector 

The Hertz vector Coefficients, calculated from (16), obey the identities 

i f k = j  

i f k f j  
@k(cY;) = 

3 Tu(a?) = - e - ( " " + ~ . i + i ~ / " ) ~ ~ + ~ - , ~ - n  
I n + l - j '  

These identities mean that the Hertz vector can be reconstructed from a partial knowledge 
of its coefficientst. For example, if the U: are known algebraic functions from j = 0 
to j = Ceiling(n/2), the remai?ing coefficients and hence the full Hertz vector can be 
found by applying the operators Pk and Sl,. When two neighbouring regions coalesce the 
coefficients of the Hertz vector transform in the expected way. Using or;(m) to denote the 
coefficients for the j t h  layer in an m-layered slab, (16) gives 

&+j(aT(n)) = a;(" - 1) 

&k+~(a;(n)) = ~ ; - ~ ( n  - 1) 

for 1 < j < k - 1 

for k + 1 < j < n 

as expected. 

6.3. The energy-lossfunction 

Finally, we can show that (19) provides an energy-loss function Xbdy that is invariant under 
the symmetry operations @k, & and k so the energy loss caused by a (possibly asymmetric) 
sample is predicted to be independent of the sense of travel of the beam. Also, 

%(Xbulk) = X& and t o ( X b d y )  = X& 

as expected. Moreover, (19) produces a result appropriate to n - 1 layers when two 
neighbouring regions coalesce. We further note that 

Scq,:.), = T:;,"-i. 
This identity can be used to simplify calculations based on (20): instead of evaluating 

$(n+l ) (n+2)  different $) - te rms ,  we can concentrate on (Floor(n/2)+1)(Ceiling(n/2)+1) 
terms, obtaining the remamder by means of the transformation k -+ n + 1 - k. 

t In the following discussion the term Ceiling(x1 denotes the smallest integer that is greater or equal to I and 
Floor(x) denotes the greatest integer that is smaller or equal l o x .  
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6.4. Symmetrical slobs 

The symmetry properties discussed above lead to simplifications when the slab is 
symmetrical about its middle layer. We consider a slab containing n = 2m+ 1 layers, whose 
geometric and dielectric properties are symmetrical about the (m + 1)th layer: ax = ah+z-k 
and EX = 6 b t ~ - t .  We have proved that the dispersion relation for such a slab can always 
be factored as follows: 

(23) 

J P R Bolton and M Chen 

I [CZn+l.Ol = GOL,, = 0 I 
where 

G o  = f m t l  + 0 [ 4 0 1  ' 

This result agrees with the special cases m = 0, m = 1, m = 2 and m = 3 discussed 
in [I91 and [21] .  In general, the factorization of the dispersion relation is a considerable 
simplification. Its physical significance can be understood by noting that the solutions of 
LL0 = 0 obey 

This shows that the solutions of L:o = 0 are antisymmetric in their Hertz vectors (and 
electric fields) and therefore symmetric in their charge distributions: these modes will 
be described as being symmetric. By a similar argument, the solutions of L,, = 0 are 
antisymmetric in their charge distributions. In both cases, the modes have a TM character. 

Another useful simplification OCCUTS in the formula for the energy-loss spectrum. For a 
symmetrical slab the energy-loss function due to boundaries can be expressed as 

where 

This result involves only ( m  + 2) / (2m + 3) as many terms as (20) for a general 2m + I 
layer slab. Kroger's result for a single slab is regained on setting m = 0. 

7. Applications of the energy loss formula 

Our expression for the energy-loss function d2P/d(ho) dk can be integrated over transverse 
wavevectors to obtain the scattering probability per unit energy range, I ( h o ) .  If all the 
scattered electrons were collected, one would expect that 

Unfortunately, as is always found in energy-loss problems, the bulk term produces a 
logarithmic divergence at large k. On the other hand, (20) shows that the terms due to 
surfaces and boundaries are well-behaved and produce no additional divergencies. The 
logarithmic divergence is dealt with as usual [22] ,  by introducing an upper cut-off k,. If all 
the scattered electrons were collected, l /& would set a minimum length scale for the validity 
of our semiclassical continuum model. In practice, k, is often determined by the sizes of 
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various apertures inside the electron microscope which restrict the scattering angle. In the 
following examples the beam energy has been set at 100 keV and the cut-off wavevector 
has been chosen to be 15 nm-' (corresponding to scattering through a maximum angle of 
9 mad). 

The expressions for Xbulk and Xbdy provide a framework for interpreting energy-loss 
spectra in multilayered slabs. Equation (18) yields bulk peaks in the energy-loss spectrum 
when E ,  Y 0 (bulk longitudinal plasmon in ith layer) and when p i  rr 0 (Cherenkov radiation 
in ith layer). However, the intensities of these peaks may be significantly modified by 
boundary effects, as (20) shows that xuy also has peaks at G~ Y 0 and p i  Y 0. It is 
natural to distinguish contributions to xuy with k -= w / c  (radiative modes) from those with 
k > w / c  (non-radiative modes). 

The most interesting feature of (20) is that additional peaks appear when the dispersion 
relation is close to being satisfied ([C.o] Y 0). Using (22) we can show that the dispersion 
relation is satisfied by taking qi = 0 for any i between 1 and n. These solutions are 
independent of geometry and correspond to transwrse bulk modes in the various layers of 
the slab. The remaining solutions of the dispersion relation correspond to true surface and 
interfacial modes. In all cases, (20) predicts a scattering probability that is proportional to 
products of differences of dielectric functions. The contribution of surface, interfacial and 
transverse modes will therefore be small if the materials involved have similar dielectric 
properties, as is the case for many semiconductors. Our numerical calculations confirm 
this fact. The best chance of observing interfacial modes arises if the materials have very 
different dielectric functions at frequencies for which [Cno] is close to zero (for typical values 
of k). This condition can often be met for metal-metal, metal-insulator and semiconductor- 
insulator interfaces. 

To illustrate our equations, we take the case of AI/AIZ03 double and triple slabs. 
(Further applications, including metal-metal and MOS shuctures, are discussed in [I31 and 
1231.) The dielectric function of bulk aluminium is taken to be 

E ( W )  = 1 - o,2/(w2 + iwwo) (25)  

with hw, = 15.0 eV and Eo& = 0.6 eV and, for ease of comparison with [17], the dielectric 
function of A1203 is modelled by a constant, 

Figure 2 shows the calculated scattering probability per unit energy range for an 
AI/A1203 double slab, with each layer of thickness d = I O O A .  There are two sharp 
peaks located around 15 eV and 10.7 eV and a much broader peak which reaches its 
maximum value at 6.5 eV, but which spreads to lower energies. These peaks correspond to 
bulk AI, surface AI and AI/AI203 interfacial plasmons. There are no bulk or surface losses 
due to Al203, because the dielectric function of this material has been taken to be real and 
positive. Our interpretation is assisted by figure 3, which shows how 2nkd2P/d(frw)dk 
varies as a function of k and ho. The three main ridges on this diagram correspond to 
the dispersion relations for bulk, surface and interface modes. Above 15 eV there are faint 
traces of a transverse bulk mode, but this does not contribute significantly to I@w). In 
our model, the bulk mode shows no dispersion. The surface mode exhibits dispersion for 
kd < 1 but, because the scattering is dominated by the high-k region, the surface peak in 
I (ho )  remains narrow. The interface mode is much broader because the high-k region no 
longer dominates. In terms of (ZO), the factors of pf and [Cno] in the denominator of Xbdy 
can both be small at low k and low w, giving rise to significant scattering from relatively 
small regions of k-o-space. 

A slightly more complicated situation arises when both surfaces of a central aluminium 
layer are coated by oxide. Figures 4 and 5 show I @ w )  and 2.nkd2P/d@o) dk for a triple- 

= 4. 
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Figure 3. A three-dimensional plot of 2nk dzP/d(fio) dk against k and hw for normal incidence 
on the AI/ABOI double.layer system of figure 2. The three main ridges correspond lo AI bulk, 
AI surface and interfacial plasmons. The surface and (more importantly) the interfacial plasmons 
an broadened towards lower frequencies as a resid1 of scattering at low k. 

layered A1203/AI/A120~ structure, with each layer of thickness 100 A. This geometry 
ensures that there is no surface AI peak, but the peak due to interfacial plasmons now has 
a richer structure between 6 eV and 8 eV, because of coupling of modes at the two metal- 
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electron energy-loss (ev) 
Figure 4. The scattenng probirbility per unit energy range for n o m 1  incidence on n symmetric 
the- layer  system A I ~ O ~ / A I / A l ~ O , .  The thickness of each layer is taken to be 100 A, The 
bulk AI peak is at 15 eV and the Al/AlzOl interface modes m around 7 eV. 

Figure 5. A three-dimensional plot of 2nk d2P/d(hw) dk against k and fiw for normal incidence 
on the A I ~ O ~ / A l / A l ~ O )  system of figure 4. The three main ridges correspond to AI bulk 
plasmons, antisymmetric intezfacial plasmons and s y m e t r i e  interfacial plasmom. 

oxide interfaces, leading to distinct symmetric and antisymmetric modes. The overall picture 
is similar to that described by Richter and Geiger [17], but the interface modes predicted 
by our retarded calculation are broader and less pronounced than those predicted in [17] 
(which is based on an electrostatic approximation). 
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11.0 11.5 12.0 12.5 13.0 13.5 14.0 

electron energy-loss (ev) 
Figure 6. The scattering intensity for n o d  i m i p  on an AI/Mg bilayer in the region 
of the interfacial plasmon. Both layers are 100 A thick. m e  dieleclric function of AI is 
modelled by (25) as explained above. while that of Mg is IAen to have a similar form but with 
hy ,  = 10.0 eV. In the inlerfacial region the dielectnc properties are varied from those of bulk 
AI to those of bulk Mg in five equal steps. The abruptness of the transition is explored by 
varying the thickness r of the individual steps. The highest peak corresponds lo. an infinitely 
sharp boundw (T = 0). The remaining peaks x e  for r 7 0.2 A.  1.0 A, 2.0 A. 3.0 and 
5.0 A. corresponding to toml healing lenglhs of 1.0 A. 5.0 A, 10.0 A. 15.0 A and 25.0 A. 

Finally, we use our theory of multilayered slabs to investigate whether it is reasonable 
to model a single interface by a sharp discontinuity in the dielectric function. We imagine 
a local dielectric function that varies smoothly near the interface of two materials, healing 
over a characteristic length of a few A. We may assume that the scattering due to this 
dielectric function is similar to that of a multilayered slab, formed by approximating the 
dielectric function by a series of step functions. We can then vary the thicknesses of the 
layers in the multilayered slab, mimicking the effect of smearing out the discontinuity at 
the interface. Figure 6 reveals the results of this procedure. It shows that the interfacial 
peak in the energy-loss spectrum is diminished by less than 30% if the dielectric function 
heals over a distance of 15 A or less. 

The local model used to construct figure 6 is rather artificial [24] but we believe that 
it illustrates a fact of some practical importance-the sensitivity of interfacial energy-loss 
peaks to the sharpness of the discontinuity at the interface. In many cases, the dielectric 
function will vary over jus1 a few atomic layers so the model of a sharp discontinuity should 
remain a reasonable first approximation. In some cases, however, the discontinuity will take 
place more gradually and the interfacial peaks will be strongly suppressed. This may be the 
case at a Si/SiOz interface [E] and will also occur when one material diffuses into another. 
Indeed, it may be possible to calibrate this effect and to use the result to monitor the onset 
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of diffusion at an interface. 

8. Summary 

Equations (15) and (19) derived in this paper provide a straightforward way of calculating the 
retarded dispersion relation and retarded electron energy-loss spectrum for normal incidence 
on any multilayered slab. We have expressed these results in as simple a form as possible, 
examined their symmetry properties and checked them against all known results. Further 
simplifications have been obtained for symmetric slabs (equations (23) and (24)). 

Energy-loss spectra obtained under conditions of normal incidence are predicted to 
contain peaks due to the excitation of coupled interface modes. These peaks are indistinct 
in common semiconductor-semiconductor structures, but are significant in many other cases. 
We have examined AI/A1203 double and triple slabs and obtained clear interfacial peaks, 
although these %e less pronounced than suggested by a previous electrostatic calculation. 
Finally, we have shown that scattering at a single interface is likely to be overestimated in 
models that assume an abrupt transition from the bulk properties of one material to the bulk 
properties of another. At atomically sharp interfaces the overestimate should be modest, 
but in other cases it may be significant. It should be possible to use this effect to estimate 
the amount interfacial diffusion from the size of the interfacial plasmon peak. 
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